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1. Abstract ) o P U

a no:}lﬁ:;r extension of model reference adaptive
control (MRAC) techmIque/t: guide a double arm nonlinearizable robot
manipulator with flexible links, driven by actuators collocated with
joints subject to uncertain payload and inertia. The objective is to
track a given simple linear and rigid but compatible dynamical model

in real, possibly stipulated time and within stipulated degree of
accuracy of convergence while avoiding collision of the arms. The
objective is attained by a specified signal adaptive feedback controller
and by adaptive laws, bceth given in closed form. A casc of 4 DOF
manipulator illustrates the technique.

2. Introduction

The MRAC technique becomes popular proposition for guidance of recent robot manipulators, with demand for
precision pointing in difficult conditions, under the action of full scale dynamic forces, and subject to
uncertainty in paramcters. Such manipulators, particularly these used on spacecraft are highly nonlinear and
nonlincarizable structures (geometric nonlinearity of clastic links, large angle articulation, nonlinear coupling
of DOF's, nonignorable gyro and Coriolis forces, several equilibria), while classical MRAC is linear and
applicable to rigid bodies only, Thus the extension is nceded for handling nonlinearity,see [1], and flexible
links, see [2]. On the other hand many robotic objectives, again particularly these in difficult space conditions
require at least two arm systems. Thus the tracking has to'be a double MRAC (mutual reference adaptive control)
which secures tracking the same model by two arms while avoiding mutual collision - cf. [3], [4]. If adaptive
(self-organizing) control is intended, the tracking relates not to a given path but to a given dynamic target-
model with prescribed target-parameters. We take the model simple thus rigid and linear, but locally compatible
with the nonlinear arms regarding equilibria. Each arm is represented as an open chain with n DOF, nonlinear
characteristics and coupling, elastic links, driven by actuators collocated with joints, under uncertain inertia
parameters and uncertain payload. The tracking is done in real possibly stipulated time by a designed signal
adaptive feedback controller and integrable adaptive laws in the state space, while avoiding collision between
arms of all the joiats (and elastic nodes) in Cartesian configuration space.

3. Motion Equations
l.agrange motion cquations give the rigid dynamics of the arms in the general format
A, shit @, s dd@d sy =Bl gl L ez ()

n

where qJ(t)._ A «R ,t2t =0, is the configuration vector of the joint variables J,...,qJ of the
o 9 n

j-th arm varyingqin the known bounded work region L of the configuration space R" H é(t) is the correspond-
ing vector of joint velocities in the specified bounded subset Ai of the space tangent to RrR";

uJ(t) < U« R are the control vectors in given compact set of comnstraints U ; XJ(F) e A o Rl , L8 2n ,

are the vectors of adjustable system parameters in bounded bands of values A , and sJ(t) € S«c Rk is an
uncertainty parameter within the known band § . Morecover Aj(qj,sj) are the inertia nxn matrices obtained in

T represent potential

the known way from the quadratic form of kinetic energy. The vectors L (HJ,...,H;)
forces (gravity, spring) while rdoa (FJ,...,Y:)T represent the internal nonpotential acting forces (Coriolis,

gyro, centrifugal, damping structural or viscous, etc.) and 87 is the actuator transmission (gear) nonsingular
nm matrix. The control vectors uJ(t) are selected for the objectives of tracking and avoidance by adaptive

i - 2
feedback control programs uJ(t) = pJ(al(t),qz(t),ql(t),q'(t),\l(t),RZ(tJ) on corresponding products of

Aq x Aé x \ . For convenicnce the superscripts "j" will be dropped until they are needed to avoid ambiguity.

Considering the links elastic we introduce the Jdeformation coordinates for the i-th link as shown in Fig. 1,
while using the Rit:z-Kantorovitch scries :xpansion
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and for vl(yi,t) R wi(yi,t) analogously, with the exact solution expected for m ~ = , We take m large
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Figure 1. Flexible link

enough so that the Kantorovitch linearization is physically justified. The technical way about it is to

stepwise subdividing the links between grid as long as the ditference of results for successive m's becomes small,
A

Having specified (2) we form the vector n{t) = (nl(t).....nn(t))T , where nl(t) é (ri(t),vi(t),wi(t))T and

following {3) write the hybrid system as

A ANE@) fop )@} (o )fq) (ra.d) (f(a,\,5) B(q,4)
T i ) I bJ l' ’ l ‘JI ’ d ' [ ) ‘ (3)
ALA G 0D jn 0P Jin) I tn) fo(n,s) 0

where An(n,s) . Fn(n,ﬁ) , ﬂ”(n,s) are the elastic correspondents of A, [, ll. while Ac(q,n),
Dc(q,i,n,ﬁ) , Pc(q,n) and the internal damping D(14,q,n,n) as well as the hybrid restoring coefficients

P(q,n) are matrices coupling the elastic and joint coordinates, These matrices are formed by integrals over
the shape functions, see {5]. Letting
A Ac
A(q,n,s} =
AT A
< n

to be the hybrid inertia matrix which is nonsingular positive definite,we inertially decouple (3):
v o T . * .
4,1 + 00q,49,n,n,4,5) + P(q,n,*,s) = B(q,q,s)u Q)
A . . . A - .
where D = A l(Dcn'Y,Dn*F”)T and P 2 A l(PQn*H.PnOﬂ”)T are successively vectors of nonpotential and potential
forces and the meaning of the matrix B8 is obvious, The vectors (, Q, n, n  form the states vector
3 . . h)
x(t) = (xl(t),...,xN(t))T 2 (q(t),n(t),q(t),n(t))T ¢ Aq = A” = AQ x Aﬁ = A< RN , N=4n , for cach arm. For
convenience (4) may be then written in the gencral state form
X 3 f(x,u,1,s) (3)
with f = (fl,...,f of the shape specified by (4) in an obvious way. Formally (5) may be written in the

contingent form:

W)

G
—

X+ (F(x,u,\,s) | se S {

which for suitable (), p(<), \(+) has solutions x(t} = k(xo,t) , t 20 , absolutely continuous curves

through each x° = x(0) in A . We shall consider the class of such solutiuns K(xo) by exhausting all values
of s{t) in (5) at each t .

4. The Reference Model

We let the given Cartesian "world" coordinates representation of the rcference model in general terms
8 8

w * FOQ)E ¢
5
with Zn DOF, F£(t) € RS.-n. and FL\m) suitable matrix, be off-line recalculated to the joint coordinate
format of the rigid linear system
U * Dm(~m)qm ¢ Pm“m)qm =0 )
with the 2n-vectors Yps Qm of joint coordinates and velocities, state xm(t) = (qﬂ([),&ﬂ(t))T N RN , and
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D-, P. suitable matrices, while A. » (A.l,...,k-l) » const ¢ A ¢ Rl , Lan ., Moreover
e o
P.(X.) (@ ,n) =0 (8)

with (q°,n®) denoting the equilibria of (3) on the surface q =0, A= 0, The total energy of the model
will be denoted by E.(En, lll) in the world coordinates and E.(q., )} in the joint coordinates, obviously equal

to one another. Then a, .
. . T
E (q,.9,) = lq- q ¢ Jo PL(Ag) do 9
I
and substituting (7),
B (q,.4) = -0, A0 @7 . (10)
The model is selected such as to allow achieving of a stipulated target behavior in the state space. To focus

attention on something specific and yet general enough, let it be stability of the origin, guaranteed by the
nonaccummulation of the total energy i.e. non-negative damping

Ej(a,.4,) s0, vq Fo (1)
while
VEn(qm.i‘) >0 (12)
in-the-large i.e. on same CAL = A - AL , where AL is the set in RN enclosing all the equilibria.
5. Objectives

Now we consider both arms j = 1,2 and the model together. The block scheme of the system is shown in
Fig. 2.
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Figure 2. Block scheme of the system

k)

Define two product IN-vectors XJ(t) = (xJ(t),xm(t))T ¢ A X 4 Q.A and two l-vectors uJ(t) = AJ(t) - \m )
which vary in A2x. generating the product trajectories (XJ(XJO,t), uJ(uJo.t)), t 20, O - x)(o) )

al® a uj(O) . Then we define the 'diagonal sets
woa (o, ) cama W s x w0, a2,

and given stipulated uJ > 0 , their neighbourhoods

Jy L)

S IS R

3 i e ! j
M2 = ((X°,x7) ¢ 4520 | X7 X ‘.AJ, ;
Moreover we let .\  be a desired subset of ) where we want the tracking to occur, and let t. be the
L%
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stipulated time after which the tracking is attained with accuracy uj .

rirst Objective: The manipulator amms (l) are mutuaily u-tracking the target (7) on A if there is a pair of
controllers pj( ) , jJ = 1,2 such that for each solution k’(xjo t) ,t 20 of (4) 1n K(xj°) , the set

‘ A x A is positively invariant: (xJo aJo) 4 A2 x A '(xj(t),u (t)) ¢ A2 x A and given t e’ for each

?( *) e K(x ) the product trajectories sntlsfy

(xj(t)o("j(t)) € Ml’l , Yt 2 !c . ’ (13)

The convergence is illustrated in Fig. 3.

o)

Figure 3. Convergence of product trajectories
Suppose the transformation from joint to world coordinates (forward kinematics) is given by
£l - CJ(q’,nj) s €= 1,...,32n (14)
g o
and denote 2Z(t) ] (x‘(t),xz(t)) . Then we let the sct
A Rz oear 5382 L d, o m 1L, 3020
bl
be the collision set between arms to be avoided. We define CA é A; - A, specified by |Eg-£;| >d, and let
A 2 .
= . < F‘- 21
AA {z.a%|d [,0 Co‘ < el
be the "slow down' safety zone, with ¢ > 0 suitable constant.

Second Objective: The tracking arms (1) avoid collision iff there is AA such that for uny LA , and
any pair kJ(-) € KJ(xJ°) the corresponding product trajectory

z(z°,t) » CA, vtmo, (15)

6. Sufficient Conditions

We return now to the first objectivc and spccify by N[;(‘IXA)] a neighborhood of the boundary (.. A)
of the region A’XA - Then let N [)(A‘xA) N3 A, M) E () 2'\) - MJ and introdvce open D’ ¢ Mj
such that DJ n MJ = ¢ , Further we consider four l funct1on> VJ( ): § * R , Vi( V: DJ R ,j=1,2

with the positive constants

v; = Vé(XJ,JJ) RS GV SR TRCE T I :

SRS B I IOy ad o i s
v, ® inf Vu(X‘,J y Lo,y . Mu n M A t (
vi'- sup vi(x’,a’) |oxd,ady ooy oo J
o

The first relation obviously requires forming VJ( +) from suitable () xA) taken asits level, or conversely,
forming 34 , 3\ from levels of suitable V () In the latter case a Ao' A smaller than these desired will
be the ;ecu?e choice.
THEOREM 1: Objective 1 is attained if, given 0 , 1, u there are prog-ams pJ(‘) and functions

: . o
Je. . . ) Iy, a2
VS( ) VuL ) such that for all (X7,+%) ﬁo x

.

g,
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W vy syl vedady en g e
(11)  for each o & pJ(x?,x9) ;
vidmdwn <o, vl s an
along the product trajectories (X"(on,t)u"(ujo,t)) , t2o0, j=1,2;
(i) 0« vﬂ(x’,a’) s vﬂ’ , vod,ady o Eﬁi , e 1,2
(iv) vi(xj,aj) H vi-, V(XJ,QJ) epl n M: y = 1,2
) for each u’ = p’(x’,xl) there is a constant <> 0 such that
dodw @) s -<y s vl s (18)
along the product trajectories (X (xJ°,¢),ad@®,t)) , t20, §=1,2.

Remark 1: The Objective 1 holds after a stipulated t. < ® {f Theorem | is satisfied with cj sclected by

<

Vj.
a4y 3
A, j=1,2, (19)
Joot

THEOREM 2: Objective 2 is attaincq if Theorem ! holds and given dJ there is a Cl-function VA('): AA + R
such that for the tracking pair pj(-) , for all 2z <CA,
(vi) VA(Z) > VA(z) , Yz €A ;
(vii) for each uj < pj(Z) .
Vsj £ S (20)

. o . o
VA(Z(Z ,8)) 20, Z ¢ AA ,

along product trajectories Z(Zo,t) , t 20,
PROOF. Suppose some Z(:“,t) , t 20, 2° ¢ A, crosses JA at t_ > 0., Then by (vi) , V, (Z(t,)) <V (Zo)
X 3 . A 1 A 1 A
which contradicts (vii).
7. Controllers and Adaptive Laws

Let us set up

CA .
J OB (59 J.J .
Vs Lm(x )+ E'(xn) + a’a’ (21)
e ody S E ol add ol e ol
vis{ ® LA o (22)
L PRI (x) x’) M.
. W <ML
- ! O E (x2) )
. ' - Vo = diggixt)-E (xd) (23)
where a’ = (sign 4{,...,sign 1;) , J = 1,2, and Ea(xJ) is En(-) with X exchanged for xJ . Choosing
N 1n CAl , the character of Em(-) specified additionally by (12), satisfies (i), (iii) and (iv)}.
To see that (vi) holds, observe that Em(xj) 3 En(ij,ij) of (6) and that increasing the distance
‘Cv-is; = 0 for at lcast one J from its JA value increases the value of VA .
To check upon conditions (ii), (v}, (vii) we differentiate (21) - (23) with respect to time
Vé(t) =& )+ ) e adV (24)
R )2) 3 ) )
. Em(x ) E'Lxm) e a’y’ , (X7,17) « C Mu .
: Qi(:) AE (x) - Ej(x)) Iy, oYy c‘ui , (25)
S N GRS A
v 2 “". V118 (x4 -F 2 N
VA(t) [En(x ) E_(x )] (l‘-m(X ) Em(l ), (26)
where
£ty 2 ok (xefdied Wy s (BulD- - -
Eotx7) Em(X )efi (v ut v (Bu-D P’qum)(l{.v) . (27)
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The brackets of the functions 8, D, P dropped for clarity. Moreover c’nﬂ are subsets of Oti defined by
*ut . J -
. C Mﬂ E-(l )2 c-\xi)
- '. J
c uﬂ. £ 0x)) <E (x) .

With a suitable choice of initial states the following set of conditions imples (ii), (v) and (vii):

; ) N J i )
(a) min max E.(x ) & E-(x.) , Y(X7,a") « C “u R

uj Sj . .
max min é_(x’) 2 é_(x_) , vid ol e c‘uﬂ ;
W

(b) -:} -ig é_(x') > -iq -:: é.(x‘) V2 e CA

iy B mmnbon v och

for q 40,040, j=1,2. In the above ca are subsets of CA defined by:
*A. L} > 2
CA: E (x%) 2 E (x%)

A E (x*) - 1
. CA: L.(x) E.(x).

)l a E P _J P 9
(<) a’a E_(_x-) LJ , A0, j 1,2 .

Observe that for a? « 0 there is no need for adaptation and that the system (4) crosses the surface ¢ » 0,

1 = 0 time instantenously (vertically) so there is no need for contro] in view of the smoothness of trajectories.
Conditions (a), (b) are called control conditions helping to design p?(-}) , condition (c) is called adaptive,
helping to design adaptive laws. Let us check that (a), (b), (c) indeed imply (ii), (v), (vii). Consider first

the case E_(x") A Em(x-) . Substituting (c¢) into (23) in view of (ii) we obtain \'I; s negative terms ¢ !‘E-(x*‘) .
Boundedness of the work space necessitates the power l.inlx") $0 thus (1{). Substituting (a), (c), and
(11) into (24) with (18 ,we satisfy (v) in stipulated time "c . Note that this holds for any initial states.
The case £k (xJ) s E (x_) 13 trivial as then v e 3 (x ) - o, Ve g (x}) = ¢ - -¢. . Finally we check
m m-m S mm “ m m )
(vii}. Again first let Em(x') # l‘:u(x') and observe that (b) substituted to (26) implies (vii). The case

Em(x') s L-'m(x‘) 15 obviously trivial.

Observe that, with (10), (¢) is implied by the following adaptive laws

¢
oL J( I «1) \
Y sign vy ‘pquu nf’ (28)

for A0, 1= t,...,n . Physically the solutions 'nJ(r'o,t.) represent the model energy flux which become

positive or negative depending upon where J2 is located {below 9r above the surface aJ = 0) thus regulating
the increment of J to zero from anywhere outside the surface Joao,

8. Modular Double RP-Manipulator

Our technigque is i1llustrated below on the case study of the tour DOF manipulator with two arms shown in
Fig. 4.

. Figure 4. The modular 2*RP aanipulator
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The Lagrange equations of motion for each arm result in the following motion equations

2 Ha a 2 - '
(a,rromad)q) ¢ 2,0,8,d; + A;ld1q; ¢ g remyqy)cos a - mgr + Xjq; ¢ 9 =y (29
. ‘ -
iy - mal) * A, v mpgsing sy,

Here As, x‘ are damping coefficients, Al,uz spring coefficients, g-gravity acceleration, the remsinder

of notations shown in Fig. 4. The superscripts "j", j = 1,2 , are ignored for the time being. ife take the
possible payload on the grippers as unknows byt within known bounds which makes ., specified by

asm,s m,

wvhere m, n positive constants. Allowing sin 9 *q - %q; ) €08 g =1 - lq; , and subdividing tha equatiouns
(29) by corresponding inertia coefficients we obtain:

ol oMo u,ial1,2 (309
where . ..

. 2,9,9,d, * Aglq,iq, 3
1 -lrfo '2q5

—_
]

-q.q? »
PR PN L A

- 2 3 . 2
Aay - demyra « Vja) - lemgagap ¢ gmpay ) (31)

- ~d 24
I w e mq3

The reference model is taken as
Gy * w3tnr * w82 7 0

Gz * Apatln2 ¢ Bigy = 0 -

(32)

The total encrgy uf the model 1is

Byl * UL SV IC TSR LA T I IR (33)

Nifferentiating it with respect to time and substituting (32),

. . o »
En(qn’qm) * lmstan '\m“mz
Accordingly,

Ell‘q’:” - (Blul"l)ql * (B:u:":)‘l: .

Choose U(Jo,x)o) . C'M'J‘ , 1 = 1,2 and :o . C'A . Then the control conditions (a), (b) hold if successively

. ) J_'-J J - 2 a N
min maxl(Blul l)qll - ‘ns(qml) v ) 1<
uJ m"

P2 1 (34)
. " j hl ‘

min "“"J‘“B: AL IRICIT R IR P

hd

u, m

and
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i 4,8 _[tyal 2u2.13Y 02
max lm[(Bxu1 rl)ql] > nl? -':((Blul rx)ql
u ui =}
(35)
weort)al 143.12ya2
n:x n:?[(szuz rydsl > nig l::’n[(Bzu2 rPa3 .
2 2 2
Thus we choose ui such that for ii f£o0,
min max((Bju}-ri)ayl = -A.s(&-l)’
W =

and for such u{ , we choose ul satisfying

1
i 2,2.12)ad 1yt .T¢yYa?
min nn:[(Blul Fl)ql] < max -1:1((81ul rl)ql]
ul = uf m
1 1 2
The procedure for u} and us is identical utilizing the sccond inequalities of (34), (35). Assuming

symmetry of arms: mj = ml=m , m} = -3 = ., €[mm , r*=risr, and substituting the expressions for
Fi . ni R 8{ , i,j 1,2, we obtain the tracking controllers

‘p3 )’
. L.

[m,r? o A(aR)? + 2mqPaY » \§1q, 14, L va] A 0

ul(t) = 4 ' )
{ suitable constant, vé{ =0,
_\m3(qﬂl)l 1, g2 e ad(a? PN INPYIY oJ
I [myrd e m(g))?) » 2mayqp(ag) ¢ 'gidplap)s, Yag £ O
u{(t) - '

{ suitable constant, Vd{ a0 ;

and the coliision avoidance controllers

A (g ) .
md m2 L= a'(q?)? gl a4
| ————ag"———‘ a q50q]) % ¢ Aj45 . Y9, T

u}(t) = {
i

suitable constant, Yq% = 0

A\ q )M 102y,
( —""%1'"—); - mqiglad - —‘2—)— L Vel Ao,
s ] 1 P ql 1
u:(t) = 9
{ sultable constant, Vd{ =0,

which imply the control conditions (a), (b) for our example. The adaptive laws (23) are

1{ 0, Jé S0

*) (s J a2 . ¢

3 a -(sign .;3)\“‘3,1.;“‘l ,g)

V. oisi Iyy g2 Lo

4 (sign 14) qu: ‘uj
for j = 1,2 . The first two laws vanish wdentically, since by design \{ R ?{ AP Numerical
simulation of our modular case, with the data m s 70kg, m = 30kg, m = 40kb, r = U.o0m, \ml = 10, \mZ = 20,

‘a3 " 5, ‘a4 * 2, 1s shown in ¥ig. 5, and confirms the convergence-avoidance required.

Figure 5. Numerical sizulation
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